Paper Title: Advanced Design Methods From Materials and Devices to Circuits for Brain-Inspired Oscillatory Neural Networks for Edge Computing

In this paper, we assess an innovative concept of emulating biological neurons with oscillators to implement an oscillatory neural network (ONN) with beyond-CMOS devices based on vanadium dioxide (VO2). ONNs can be of interest as an ultra-low-power neuromorphic architecture capable of performing associative memory tasks, such as pattern recognition in IoT edge devices. To explore the benefits and costs of beyond-CMOS ONNs necessitates modeling, simulation, and design methods spanning from materials (e.g., atomistic methods) to devices (e.g., technology-computer-aided-design, TCAD) up to circuits (e.g., mixed-mode simulation, compact modeling). In this work, we report on the development of such an advanced design toolbox and the results on performance and features of beyond-CMOS ONNs. The proposed design toolbox allows exploring ONN scalability, accuracy, energy, and performance for pattern recognition applications.

Biographies

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Your Content Goes Here

Access the full publication here